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Smoothing a sample of circular data 
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Al~traet--The purpose of this note is to demonstrate certain pitfalls associated with the use of circular histograms 
or rose diagrams for displaying two-dimensional orientation data, and to recommend an alternative method of 
summarizing and displaying distributional features of the data. 

INTRODUCTION 

At~ ESSENTIAL aspect of good statistical analysis of a 
sample of data (whether linear or circular) is Exploratory 
Data Analysis (Tukey 1977). On the basis of some 
suitably-chosen graphical displays and, possibly, some 
simple summary quantities and 'smoothing' of the data, 
the data analyst can form an initial appreciation of a 
suitable statistical model for the data (e.g. uniform, 
unimodal or multimodal) and note the characteristics 
(e.g. outliers), which might help determine the choice of 
method in the next, more formal, stage of statistical 
analysis. For  two-dimensional orientation data, the 
most-widely used method of graphical display is a variant 
of an angular histogram known as a rose diagram. Rose 
diagrams are simple to draw, and can convey useful 
information about general features of the data. 

A rose diagram is constructed by specifying a grouping 
interval or bin width W (e.g. W = 50), and specifying one 
of the bin boundaries (e.g. 0", so that the intervals are 
0°-5 °, 5"-10 ° . . . .  ), with a direction like 10" falling into 
the 10"-15" bin. Sectors are then constructed with radii 
proportional to the amount  of data or, preferably, the 
square root of the amount  of data in the various bins. 
The bin width W controls the amount  that the data are 
smoothed,  and such a smoothing parameter  is a key 
feature of any smoothing procedure.  However ,  the need 
to specify a bin boundary is an undesirable property of 
all histograms because it introduces an unfortunate 
artefact: the choice of bin boundary can have a consider- 
able effect on the shape of the histogram. 

Figure 1 is an example of this boundary effect for 
linear data. The precise nature of the data is unimpor- 
tant,  but their purpose is not: it was desired to infer that 
the distribution was bimodal. Figure l(b)  shows the data 
set shifted en masse by adding 25 to each datum, so that 
the bins of the histogram are the same width as in 
Fig. l (a)  but differently located with respect to the data. 
On the basis of this figure, there is little evidence to 
support the hypothesis of bimodality. 

Similar difficulties arise with circular data. Figure 2 
shows a sample of azimuths and four associated rose 

diagrams from a fracture analysis at Wailsend Borehole 
Colliery (Enever  et al. 1980, Set 17). Note that,  as the 
data are axial, both ends of each axis have been shown in 
the raw data plot. The  rose diagrams have been drawn 
with the same 10 ° bin widths but different locations for 
bin boundaries. The differences, although not as striking 
as in the previous example, are enough to cause concern. 
(In fact, this difficulty arose some time ago with these 
data when they were plotted with respect to Magnetic 
North and subsequently re-plotted after adjustment to 
Grid North.)  Deciding on the correct bin width-- that  is, 
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Fig. I. Histograms of 105 data points (a) data unshifted; (b) data 
shifted by 25 units. 
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Fig. 2. (a) 75 fracture measurements; data are undirected axes, so both ends of each axis have been plotted. (b) Four rose 
diagrams for data in (a), with bin boundaries shifted. 

on the correct amount of smoothing--is a sufficiently 
difficult problem without having to worry about where 
to position the bins. 

An alternative to the histogram and rose diagram is a 
'non-parametric density estimate'. This is a method of 
smoothing the data which has the advantage over histo- 
grams and rose diagrams of avoiding an arbitrary choice 
of cell boundary. However, in common with these latter 
displays it does require a choice of smoothing parameter. 
Silverman (1986) gives a general account of the subject. 

One form of non-parametric density estimate is 
described in the next section, and examples of its use and 
further discussion are given for the data of Fig. 2, and for 
a more complex data set, in the final section. 

sample sizes or greater concentration in the data corre- 
sponding to smaller values of h, and conversely. 

The procedure outlined below is an adaptation to 
circular data of linear data methods in Silverman (1986), 
using a quartic kernel function W(O) = 0.9375(1 - 02) 2 
for - 1 -< 0 - 1, and zero otherwise (see also Siiverman 
1986, pp. 4-5, 31). Suppose first that the data are in a 
single clump. 

Step 1. Calculate the mean resultant length R of the 
data: 

C =  cos0i, S =  ~ s i n 0 i ,  
iffil i l l  

= (C 2 + S2)lr2/n. 

A KERNEL DENSITY ESTIMATE FOR CIRCULAR 
DATA 

A density estimate which is simple to implement is the 
kernel estimate, essentially a moving average of the 
data. Suppose that the sample comprises n measure- 
ments 01, • • . ,  0, transformed to the range (0, 2~). The 
general form of the estimated density f(O) in some 
direction 0 is (e.g. Silverman 1986, p. 15) 

f ( o )  = w , 
i f f i l  

where W is the so-called kernel (or weighting) function 
and h the smoothing parameter. Generally speaking, the 
precise choice of W is less critical than the choice of h: 
the larger the value of h, the more smoothing results. 
The amount of smoothing should be related to the 
sample size and to the dispersion of the data, with larger 

Step 2. Calculate 

f 2 l  4- ~3 4" 5~s/6 R < 0.53 
K = 4-0 .4  + 1.39R + 0.43/(1 - R) 0.53 < R <- 0.85 

t ( l  3 - 4R 2 4" 3R) -1 R > 0.85 

and o = 1/K trz. (K is an estimate of the yon Mises 
concentration parameter---see Best & Fisher 1981.) 

Step 3. Calculate h0 ffi 71r2o/n vs. (For a single group of 
data, this parameter is designed for use with a quartic 
kernel.) 

Step 4. For any given direction 0 and smoothing 
parameter h, calculate the density estimate f(O) using 
the following algorithm: 

4.1. i = 0  

sum -- O. 
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4.2. i = i + 1 

d, = IO - 0,1 
ei = min(di, 2:r - di). 

4.3. If el -> h go to 4.2. 

4.4. Sum = sum + (1 - e2/h2) 2. 

4.5. I f i  < n go to4.2. 

4 .6 . f (0)  = 0.9375 x sum/(n x h).  

4.7. Repeat this for, say, 100 values of 0 equally 
spaced between 0 and 2:r, yielding 

( o r ,  f , )  . . . . .  (otoo, f ,  oo), 

where 

fj  = f ( 0 7 ) ,  j = 1 . . . . .  100. 

4.8.  To plot the density around a circle of unit radius, 
normalize fj by 

g / =  fj/max(ft . . . .  , fl00) 

and let 

f7 = (1 + g / ) l r 2 -  1, j =  1 . . . . .  100. 

Join up the points 

(0~, f t ) ,  • • . ,  (Otoo, ftoo), (Or, f t ) .  

f]* . . . . .  ffl0o are used instead of fl . . . . .  floo to avoid 
distorting the plot: use of f l  . . . . .  floo results in overem- 
phasis of large peaks at the expense of small ones. 

Step 5. It is usually helpful to look at the density 
estimates corresponding to values h in the range 0.25h0, 
1.5h0. 

More care is required when the data appear to have 
two or more modal groups or clumps. Whilst it is difficult 
to formulate a simple general procedure, satisfactory 
results can often be obtained by estimating R in Step 1 
just from the data in the largest clump. 

More effective algorithms can be based on the Fast 
Fourier Transform; see Silverman (1986) for details. 

When the data are axial, or undirected, such as those 
in Fig. 2, the following adjustments are required: 

Step O. Convert the data to vectors, or directed lines, 
by doubling them. 

Replace Step 4.8 by 
Step 4.8*. Join up the points. 

'½0" qO* (½0 ' + n,  f l  ), t ,  l , J l  ] • • " ,  ~, l O 0 ,  J l O O ] ,  • • . ,  

O* (½ I~, + rr, f~'oo), (½0?0o, f~'), 

wheref~' . . . . .  f~'oo are calculated as described in Step 4.8. 

E X A M P L E S  A N D  F U R T H E R  C O M M E N T S  

Returning to the data of Fig. 2, a simple calculation 
leads to the value h = 0.45 (from Steps 1-3 of the 
algorithm). The corresponding density estimate is shown 

in Fig. 3. There is little evidence, from the raw data, of 
more than one modal group being present. 

A more complex data set, comprising measurements 
of long-axis orientation of 148 feldspar laths in basalt 
(Smith 1988, Set 1-7-2 co.prn) is displayed in Fig. 4(a). 
The two main clumps of data have very similar disper- 
sions, so that a smoothing value of h = 0.26 is appro- 
priate to either. The densities shown in Figs. 4(b)-(d) 
were computed using 0.25h, h and 1.5h, respectively. 

Clearly, the density in Fig. 4(b) is grossly under- 
smoothed. The density in Fig. 4(c) appears to be a 
reasonable representation of the data, with two domi- 
nant modal groups and a smaller N-S mode; the density 

Fig. 3. Non-parametric density estimate for data in Fig. 2(a). 

in Fig. 4(d) is probably oversmoothed, with the N-S 
mode virtually eliminated. Thus, some degree of subjec- 
tivity remains, which can only be resolved with a formal 
statistical test (the subject of a current investigation). 
Meanwhile, examination of two or three different 
degrees of data smoothing, as in this example, is strongly 
recommended. 

In conclusion, it is recommended that a raw data plot, 
in conjunction with one or more non-parametric esti- 
mates of density, be regarded as the primary method of 
initial examination of a sample of orientations. 
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Fig. 4. (a) Orientations of principal axes of 148 feldspar laths; (b) non-parametric density estimate (h = 0.045); (c) 
non-parametric density estimate (h = 0.25); (d) non-parametric density estimate (h = 0.39). 
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